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Abstract—Deploying Connected and Automated Vehicles
(CAVs) on top of 5G and Beyond networks (5GB) makes them
vulnerable to increasing vectors of security and privacy attacks.
In this context, a wide range of advanced machine/deep learning-
based solutions have been designed to accurately detect security
attacks. Specifically, supervised learning techniques have been
widely applied to train attack detection models. However, the
main limitation of such solutions is their inability to detect
attacks different from those seen during the training phase, or
new attacks, also called zero-day attacks. Moreover, training the
detection model requires significant data collection and labeling,
which increases the communication overhead, and raises privacy
concerns. To address the aforementioned limits, we propose in
this paper a novel detection mechanism that leverages the ability
of the deep auto-encoder method to detect attacks relying only
on the benign network traffic pattern. Using federated learning,
the proposed intrusion detection system can be trained with
large and diverse benign network traffic, while preserving the
CAVs’ privacy, and minimizing the communication overhead. The
in-depth experiment on a recent network traffic dataset shows
that the proposed system achieved a high detection rate while
minimizing the false positive rate, and the detection delay.

Index Terms—5GB, Connected and Automated Vehicles, Secu-
rity, Zero-day attacks, Federated Learning

I. INTRODUCTION

Fifth generation (5G) and beyond (5GB) networks promise

to revolutionize the transportation industry by enabling ultra-

reliability with ultra-low latency and high bandwidth commu-

nications [1]. These advances will significantly empower many

verticals, such as smart agriculture, health, and Intelligent

Transportation Systems (ITS). As part of ITS, Connected and

Automated Vehicles (CAVs) have been taken significant and

careful considerations in 3GPP 5G standards [2]. Specifically,

integrating V2X communications into the 5G ecosystem has

enabled innovative use cases and applications, such as ad-

vanced driving, vulnerable road user protection, and vehicle

platooning [3]. Yet this progress is expected to be extended

with 5GB, contributing thus to reducing traffic accidents and

dramatically saving road users’ lives. However, CAVs at all

automation levels will face a massive vector of cyberattacks

coming from 5GB technologies and leading to hazardous

situations for road users. For example, Distributed and Denial

of Service (DDoS) attacks have already been demonstrated to

break 5G services [4]. But the impact of these attacks are likely

to be more expansive with the integration of CAVs. More

than this, cyberattacks are working continuously to develop

novel tactics for breaching and breaking such systems. Facing

all these challenges, Machine Learning (ML) appears as a

key cybersecurity enabler to protect 5GB-enabled CAVs [5].

Various Machine Learning (ML)/ Deep Learning (DL) based

Intrusion Detection Systems (ML/DL-based IDSs) have been

proposed to protect vehicular networks against attacks. Most

of them rely on supervised and centralized learning [6].

Centrally training the detection model requires significant data

collection and labeling, which increases the communication

overhead, and may raise privacy concerns. To mitigate central-

ized learning limitations, collaborative ML [7] has been used,

enabling thus continuous accuracy evolution and flexibility.

Nevertheless, several limitations exist in early collaborative

ML-based IDSs [8]–[10]. Specifically, they generate a signif-

icant communication overhead during ML model updates and

may violate data privacy, since learning nodes might share

private information. To cope with the aforementioned issues,

recent research [11]–[14] leveraged the potential of federated

leaning (FL) paradigm, which has shown promising results in

many applications. FL is a distributed ML paradigm allowing

several nodes to train a global model cooperatively without

sharing their datasets, avoiding thus overhead and mitigating

privacy risks [7]. Interestingly, all existing FL-based IDSs for

5GB-enabled CAVs rely on supervised learning techniques.

One important limitation of using such techniques is their

inability to detect attacks different from those seen during the

training phase (unseen attacks), and zero-day attacks. Another

challenging issue is data imbalance, i.e., the numbers of benign

and malicious traffic samples are not in the same range. Benign

network traffic samples are easily available. On the other hand,

malicious samples are scarce or unavailable. The lack of a

thorough dataset of attack samples limits the usage of super-

vised techniques. Finally, most existing detection approaches

assume that FL clients maintain labeled datasets that may use

at each round. This assumption may not be realistic, as CAVs

cannot label the network flow on every turn.

As a CAV runs a set of well-known applications (safety,

convenience, commercial, etc), their communication pattern



should present a high degree of regularity so long as they are

not under attack or faulty. Similarly, an attack must alter its

communication pattern. Therefore, we believe it is possible

to use anomaly detection techniques to model the CAV’s

benign (or expected) communication pattern and detect attacks

as anomalous occurrences. To overcome the aforementioned

limitations of the existing IDSs, in this paper, we propose an

unsupervised federated learning based IDS that leverages a

deep auto-encoder model to train the detection model, relying

only on benign network traffic. Thanks to federated learning,

the proposed IDS can be trained with large and diverse

benign network traffic, while preserving the CAVs’ privacy.

The proposed IDS aggregates the detection model updates

within the Multi-access Edge Computing (MEC) server to

enhance the learning efficiency and minimize latency. The in-

depth experiment on a recent network traffic dataset shows

that the proposed system achieves a high detection rate while

minimizing the false positive rate, and the detection delay.

The remainder of this paper is organized as follows. Sec-

tion II describes related work. The design of our scheme is

presented in Section III. Section IV depicts the performance

evaluation results, and finally, Section V concludes the paper.

II. RELATED WORK

Several distributed ML-based IDSs have been proposed

for detecting attacks in 5GB-enabled CAVs. Negi et al. [8]

presented a DL-based IDS to detect anomalies in ITS based on

Long Short-Term Memory (LSTM). In this work, time series

data are collected by CAVs and sent to the cloud to enable

the training and retraining of a global model using a cluster

of servers instead of one server. Shu et al. [9] proposed a

collaborative IDS based on supervised DL, Generative Adver-

sarial Networks (GANs), and Software Defined Networking

(SDN). The proposed system enables distributed SDN con-

trollers managing sub-networks of CAVs to train a global

model for the whole network without directly exchanging

their sub-network flows. However, both [8] and [9] raise pri-

vacy issues since datasets are shared between learning nodes.

Zhang et al. [10] proposed a distributed ML-based IDS that

enables CAVs to directly communicate to train a global model

based on supervised learning without sharing their datasets.

However, peer-to-peer distributed learning generates a large

overhead, degrading communication performance. Uprety et

al. [11] proposed a FL-based privacy-preserving collabora-

tive IDS for CAVs. This work enables CAVs (FL clients)

to train DL models on a locally labeled dataset and share

their parameters with the central FL server to build a global

model. Boualouache et al. [12] proposed a FL-based privacy-

preserving collaborative IDS based on supervised learning that

leverages a set of FL servers to train the global model. Liu et

al. [13] proposed FL for collaborative IDS. This work suggests

offloading the training to distributed vehicular edge nodes.

Specifically, CAVs act as FL clients for building models based

on their locally labeled datasets and Roadside Units (RSUs)

for aggregating global models. Hbaieb et al. [14] proposed

SDN-FL-based IDS for CAVs. In this work, SDN controllers

train local models based on labeled datasets built using data

collected from CAVs, while the aggregation of global models

is performed on the cloud.

Overall, existing FL-based IDSs for 5GB-enabled

CAVs [11]–[14] have specifically two main limitations:

(i) they are based on supervised learning which limits their

effectiveness against unseen and zero-day attacks, and (ii)

they assume that FL clients have labeled datasets, which in

practice might be unrealistic. Considering these gaps, we

propose a novel network-based IDS trained using a deep

auto-encoder model. Relying only on benign network traffic,

our system can detect unseen or zero-day attacks so long

as they alter the benign communication pattern of the CAV.

Additionally, our solution does not compromise the CAV’s

privacy since it is built through federated learning.

III. PROPOSED SOLUTION

Collaborative learning allows training the model with a large

amount of network traffic from diverse CAVs, while preserving

data privacy, and minimizing the communication overhead.

The proposed MEC-enabled learning scheme trains the deep

Auto-Encoder (AE) model in a federated way, as illustrated

in Figure 1. First, the raw captured packets are converted

to flows. Then, for each flow, a set of pertinent features are

calculated. Next, the local dataset of flows is fed to the AE

model initially distributed by the MEC server. The training

rounds are orchestrated by the MEC server and executed by

the AE on the participating CAV’s local dataset.

A. Flow extraction & features engineering

First, to identify a traffic flow, we use a combination of

five properties from the packet header, including the network

and the transport layer headers of the TCP/IP protocol stack.

These are as follows: source IP address, destination IP address,

source port number, destination port number, and protocol. For

each flow extracted, a set of features are calculated according

to a given time window (ex. 100 seconds). Flow features

include mainly packet header characteristics and statistics

computed from the aggregating network and transport layers

header information of the packets in a flow. The network

features are related to: time, packets, bytes, and flag groups.

The list of features as well as their description are given in

table I.

B. Modeling benign network traffic pattern

The Auto-Encoder (AE) model [15] is an unsupervised

model that compresses input vectors as code vectors using

a set of recognition weights and then converts back to m

(m < d) number of neurons reconstructed input vectors using

a set of generative weights. There are two major parts in an AE

architecture: the encoder and the decoder. The encoder reduces

the dimension of the input vectors (xi ∈ Rd) to numbers

of neurons that form the hidden layer. The activation of the

neuron i in the hidden layer is given by:

hi = f θ (x) = s(

n
∑

j=1

W
input
ij xj + b

input
i ) (1)
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Fig. 1: MEC-Enabled Federated learning architecture

TABLE I: List of network features

Feature names Description

numHdrs Number of headers (depth) in hdrDesc
l4Proto Layer 4 protocol (TCP, UDP, HOPOPT,. . . )
dstPortClass Port based classification of the destination port name (HTTPS, Telnet, NTP, ..)
numPktsSnt, numByteSnt Number of transmitted packets/ byte per second
minPktSz, maxPktSz, avePktSize, stdPktSize Minimum/Maximum/Average/ Standard deviation of layer 3 packet size
pktAsm, bytAsm Packet/ Byte stream asymmetry
duration Duration of the flow in seconds
minIAT, maxIAT, aveIAT, stdIAT Minimum/ Maximum/ Average/ Standard deviation of inter-arrival time
pktps/ bytps Number of sent packets/ byte per second
ipTTLChg, ipTOS, ipFlags IP TTL change count, IP Type of Service, IP aggregated flags
tcpISeqN TCP Initial Sequence Number
tcpSeqFaultCnt TCP sequence number fault count
tcpPAckCnt TCP packet ack count
tcpFlwLssAckRcvdBytes TCP flawless ack received bytes
tcpInitWinSz, tcpAveWinSz, tcpMinWinSz, tcpMaxWinSz, TCP initial/ average / minimum/ Maximum effective window size
tcpWinSzDwnCnt, tcpWinSzUpCnt TCP effective window size change down/up count
tcpWinSzThRt TCP packet count ratio below window size WINMIN threshold
tcpFlags TCP aggregated protocol flags (cwr, ecn, urgent, ack, push, reset, syn, fin)
tcpAnomaly TCP aggregated header anomaly flags
tcpOptions TCP aggregated options
tcpMSS TCP maximum segment size
tcpEcI TCP estimated counter increment
tcpUtm, tcpBtm TCP estimated up/boot time
tcpSSASAATrip TCP trip time SYN, SYN-ACK Destination — SYN-ACK, ACK Source
tcpRTTAckTripMin, tcpRTTAckTripMax, tcpRTTAckTripAve TCP ACK minimum/ maximum/ average trip time
tcpRTTAckTripJitAve, tcpRTTAckJitAve TCP ACK trip/ round trip time average jitter
tcpRTTSseqAA TCP round trip time {SYN, SYN-ACK, ACK} and {ACK-ACK}

where x is the input vector, θ is the parameters
{

W input, binput
}

, W is an encoder weight matrix of dimen-

sion m × d, while b is a bias vector of dimension m. Thus,

the input vector is encoded to a vector with fewer dimensions.

The decoder maps the low-dimensional hidden representation

hi to the original input space Rd by the same transformation

as the encoder. The function of mapping is as follows:

xi
′ = gθ′(h) = s(

n
∑

j=1

Whidden
ij hj + bhiddeni ) (2)

The set of decoder parameters is θ′(Whiddenhj + bhidden).
The objective of an autoencoder is to minimize the reconstruc-

tion error relative to θ and θ′ :

θ∗, θ
′
∗ = argθ,θ′min

1

n

n
∑

i=1

ε(xi, x
′

i) (3)

= argθ,θ′min
1

n

n
∑

i=1

ε(xi, gθ′ (fθ(xi))) (4)

The reconstruction error is utilized as the anomaly score.

Network flows with significant reconstruction errors are re-

garded as malicious flows (anomalies). Only benign flows are

used to train the AE model. After training, the AE model will

reconstruct benign flows exceptionally well, but not malicious

flows that it has never seen. Algorithm 1 illustrates the

anomaly detection process using the reconstruction errors of

the AE model. The threshold α is the sum of the sample’s

mean squared error (MSE) median and the sample’s five times

the MSE median absolute deviation (MAD) over the validation



set. MAD uses the deviation from the median, which is less

likely to be skewed by outlier values.

Algorithm 1: AE-based Anomaly Detection

1 BEGIN

2 PHASE 1: Flow extraction & Preprocessing

3 INPUT: pkts: raw packets, TW : Time window (s)

4 Extract flow from pkts according to the TW

5 Data← Calculate l features vectors (see table I for

features list)

6 XTr, XV , XTe ← Splitting Data

7 ## PHASE 2: Training the AE Model

8 INPUT: XTr : Train dataset, XV : Validation dataset

9 φ, θ ← train the AE on XTr

10 for i ∈ {1, ..., N} do

11 REV [i] =
∥

∥

∥
x
(i)
V − gθ(fφ(x

(i)
V ))

∥

∥

∥

12 end for

13 α = M̃SEREV
+5×median(REV [i]−medianREV

)
14 ## PHASE 3: Testing

15 INPUT: XTe: Test dataset, α: Threshold

16 for i ∈ {1, ..., N} do

17 RE[i] =
∥

∥

∥
x
(i)
Te − gθ(fφ(x

(i)
Te))

∥

∥

∥

18 if RE[i] > α then

19 x
(i)
Te is a malicious flow

20 else

21 x
(i)
Te is a benign flow

22 end if

23 end for

24 END

C. MEC-enabled federated training process

First, the MEC server initializes the learning parameters of

the shared model in terms of neural network configuration

(number of layers, number of neurons, activation functions,

etc.), batch size, learning rate, number of epochs, etc. It then

shares such parameters with the participant CAVs. Each CAV

computes local updates on top of both the AE model and

its local data. Once done, each CAV sends its local model’s

parameters (weights) to the MEC server. The latter aggregates

the received local models to generate a global learning model,

before sending it back to the involved CAVs, in order to initiate

a new training round.

In our study, the federated learning problem across multiple

CAVs is formulated as a federated optimization problem and

resolved using the FedAvg algorithm [16]. Indeed, using

its local data, each CAV calculates the average gradient on

top of the model w for a corresponding training round r.

Thereafter, each CAV performs a local gradient descent on the

currently used model with its own data. On the other hand,

the MEC server aggregates these local updates and transfers

back the global model to the CAV collaborators. This process

is repeated during a number of rounds, defined initially by the

MEC server. Algorithm 2 illustrates the main steps performed

by both the central MEC server and each participating CAV

(Client).

Algorithm 2: Federated Averaging Algorithm

1 BEGIN

2 Variables: K: index of clients, B: local batch size, E:

number of local epochs, η : learning rate

3 ClientUpdate: #

4 β ← (split Pk into batch of size B )

5 for each local epoch i ∈ {1, ..., E} do

6 for batch b ∈ B do

7 w ← w− η▽ l(w; b)
8 end for

9 return wto server

10 end for

11 Server executes:

12 Initialize w0

13 for each round t ∈ {1, ..., N} do

14 m← max(C. K, 1)

15 St ← (random set of m clients)

16 for each client k ∈ St in parallel do

17 wk
t+1 ← ClientUpdate(k,wt)

18 wt+1 ←
∑k

k=1
nk

n
wk

t + 1
19 end for

20 end for

21 END

IV. PERFORMANCE EVALUATION

In this section, we first briefly describe the dataset [17]

used in this research. Then, we present and discuss in detail

the detection performances of the proposed system. Finally,

we compare our approach with supervised and centralized

approaches.

A. Dataset preprocessing & features enginnering

To the best of our knowledge, VDoS [17] is the only

publicly available dataset that includes benign and malicious

traffic generated based on a realistic testbed. The network

traffic was gathered in three different settings: urban, rural,

and highway. The experimental environment included two

vehicles, 3 physical machines, 4 virtual machines, 2 access

points, a 4G modem, and two Cisco antennas. Common user

applications such as Google Maps, YouTube, social networks,

and other real-time applications (video/audio calls) have been

run to generate benign network traffic. To generate malicious

traffic, three Kali-Linux machines run three scenarios of DoS

attack: UDP Flood, SYN Flood, and Slowloris packets alter-

nately. In this research, we do not consider the third scenario,

because we believe it is quite unusual that a CAV may hosts a

web server. For further details about the testbed and the dataset

generation please refer to [17].

To extract flows and calculate features from raw traffic

(PCAP files), we developed some scripts using Tranalyzer

flow traffic exporter [18]. We tried several time windows



TABLE II: Dataset samples distribution

Highway Rural Urban

Normal 48303 32303 65742
SynFlood 65790 65790 67043
UdpFlood 65790 65790 65790

(TW) to sample the network traffic. Having achieved similar

performance, and taking into account that a smaller TW allows

faster detection, we fixed the TW to 1s. Table II presents

the number of benign and malicious flows extracted for each

type of environment. Pearson correlation filter is then used to

discard highly correlated features ( > 95%).

B. Experimental results

We trained and tested the proposed system in the Google

Colab cloud environment. We used the Pytorch package to

implement the local and federated learning models. We im-

plemented a deep auto-encoder with three hidden layers (50%

dimension decrease from one layer to another). The binary

Mean Squared Error (MSE) loss function was used. Table

III illustrates the hyperparameter setup used for local and

federated learning. To evaluate the detection performance of

our solution, in addition to the false positive rate (FPR), we

considered the following metrics :

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1-Score =
2TP

2TP + FP + FN
(6)

Overall, the proposed solution presented a high detection

rate with a low false positive rate. The detection model was

able to discriminate between the reference benign traffic profile

and malicious network traffic. Table IV shows how the average

accuracy, F1-score, and false positive rate may change by

varying the number of participating CAVs. Using just three

CAVs allowed for nearly the same detection performances

while cutting the training time by about 30%. We can see

from figure 2, that there is no further improvement in terms of

loss function score beyond the 11th round. This demonstrates

that the detection model did not require a large number of

communication rounds to converge.

As can be observed from figure 3, the proposed system

performed better against the SynFlood attack. This can be

explained by the relatively large number of TCP-related fea-

tures (compared to UDP) included in the features vector.

Although 99.99% F1-Score and 0.01% FPR rate have been

achieved using supervised learning, specifically, decision tree

in [17], our system shows comparable detection performances

using only benign traffic. To get a good idea of how well

the proposed model worked, we compared it to a centralized

model that was trained with the whole dataset. The results

comparison depicted in figure 4 shows that the federated

model yielded remarkably similar detection performances as

the centralized model.

V. CONCLUSION

New attack vectors have emerged from the integration of

V2X communication in the 5G ecosystem, which may lead

to hazardous situations for road users. Most of the existing

IDSs in 5G-V2X are either unable to detect emerging zero-

day attacks because they rely on supervised learning, or do

not meet privacy requirements due to data collection required

for centralized learning. To tackle these limits, we proposed

in this paper a new IDS based on a deep auto-encoder model,

which leverages the predictability of benign network traffic

to detect attacks. Relying on federated training orchestrated

by the MEC server, the proposed IDS did not require any

data collection or labeling. Through in-depth experiments on a

recent dataset, we have shown that the proposed IDS provides

high performance even with few communication rounds and

a short TW sampling, which allows fast training and low

detection delay. In future work, we plan to evaluate the

proposed IDS on other non-Identical Independent Distribution

(non-IID) datasets including more sophisticated and recent

attacks.

Fig. 2: Loss Vs Nb. rounds
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TABLE III: Hyperparameters values

Hyperparameter Value Description

lr 0.012 Learning rate for the deep AE
Nb clients 10 Number of clients
Nb selected 3-6 Number of clients we choose for train
Batch size 128 Defines the dataset size in each training iteration
R samp sz 1000 Choose some data from the train set to retrain the data from trained model
Nb rounds 20 Total number of communication rounds for the global model to train
Epochs 15 For train client model
Nb retrain epochs 5 Total number for retrian the global server after receiving the model weights
Nb local epochs 50 Only for the local deep AE training

TABLE IV: Evaluation of detection performances

Nb. Clients Accuracy F1-Score FPR Time (mn)

10 87.94% 91.21% 6.95% 14.80
8 87.94% 91.22% 6.98% 11.53
6 87.95% 91.23% 7.06% 9.32
3 87.94% 91.21% 6.92% 4.43
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